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ABSTRACT 
     This paper describes the development of two computational 
tools aimed at tackling difficulties encountered by engineers when 
conducting CFD analysis during the design phase of modern gas 
turbines. The first tool is focused on minimizing the computational 
time and labour required to modify an existing mesh. Traditionally, 
modifying a mesh requires editing its respective geometry at CAD 
level, exporting it to the mesh generator, and regenerating the 
whole mesh from scratch. The authors propose instead a mesh 
morphing tool which manipulates the nodes directly without the 
necessity of revisiting the CAD system nor the mesh generator and 
uses robust optimization techniques to control the quality of the 
outgoing mesh. The second tool is a Level Set based geometry 
kernel integrated with an octree-based cut-Cartesian mesh 
generator, RANS solver and post-processor. This novel approach 
provides rapid and fully automated mesh generation for complex 
geometries and also allows arbitrary topology edits to the geometry 
in the spirit of real time computer game. The tool was successfully 
integrated within the framework of a widely used design 
optimization system. Turbomachinery applications using the 
proposed computational tools are presented. 
 
INTRODUCTION 
     So far, the development in the CFD industry has been focused 
mainly on improving the accuracy of the solver as well as 
minimizing computational costs by implementing parallel 
processing libraries. The low cost and processing power of PC 
clusters have enabled designers to analyze large number of 
configurations overnight, providing a rich database of candidate 
geometries to be chosen from. As a consequence, the bottlenecks in 
the CFD process have been shifted towards the pre-processing and 
results visualization steps. Cutting-edge technology in 
turbomachinery design assisted by CFD requires the ability to 
generate large computational grids based on detailed CAD models 
with the least possible user interaction and in a short period of time. 
The design system must also be flexible enough to allow the 
designer to freely modify the geometry and rapidly regenerate a 
high quality mesh. The CAD to mesh process in conventional CFD 
is simply not robust enough to permit meaningful automation of 
design space exploration. In addition to that, the CAD to mesh 
process is done in serial, different software is used for each of the 
tasks in the process (requiring different licenses, different file 
formats, different training for engineers) and coupling between 
CFD and FEA models is not straightforward. 
 

  
     With all these challenging issues in mind, the authors would like 
to describe the development of two powerful computational tools. 
The first tool morphs an existing mesh and it is focused on 
controlling the quality of the output mesh. The second tool, on the 
other hand, permits arbitrary topology geometrical changes and its 
approach is completely different from traditional CFD. In both 
cases the objective is to bypass the CAD-mesh bottleneck and 
permit meaningful automation. 
 
MESH MORPHING TOOL 
     The working principle of the mesh morphing tool is summarized 
in Fig.1. The software reads in a mesh file from an external CFD 
code, morphs it and exports a high quality mesh without the 
necessity of revisiting the original mesh generator. This 
methodology allows designers to save substantial amount of time 
for cases where local and moderate changes in the mesh are to be 
systematically applied.     
 

 

1) Read and store hex/prism cell data

3) Store quality of original mesh

4) Define FFD control points
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Mesh fi le for external CFD code (FLUENT)  
 

 

Fig.1 - Working principle of the mesh morphing tool. 
 

     The software starts by reading the basic hexahedral/prismatic 
cell data and generating the cell faces. On the first run of the 
software the viscous layer flagging mechanism is executed (Fig.2). 
This process consists of automatically associating nodes in the 
refined parts of the grid near the wall boundaries (viscous layer) 
with a root surface node. The basic principle of viscous layer 
flagging for a surface node with adjacent hexahedral or prism cells 
is to find the node from these neighboring cells that shares the 
maximum number of common hexahedral/prism cells with this 
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particular surface. Since the orientation of the nodes in the cell is 
known it is possible to easily find one out of three neighboring 
nodes that matches the criterion. In Fig.2 the reference (root) 
surface node 4 points to two surface nodes (1 and 3) and one 
internal node (8). Therefore, node 8 belongs to level 2 whereas 
nodes 1, 3 and 4 belong to the root level or level 1. The process is 
repeated until all levels (defined by the user) have been flagged. 
This methodology is implemented in a very straightforward manner 
allowing layers with mixed cell types (hexahedrons and prisms) to 
be flagged by the same routine. There are cases, however, in which 
additional layers need to be created in the regions between existing 
layers and one single surface node might be the root node for an 
array of nlayer(surface 1) x nlayer(surface 2) x nlayer(surface 3) 
nodes. Additional routines have been coded to cover these special 
cases. Once the flagging process is complete the data is stored in a 
pointer file. This process is only necessary to be done once and for 
such reason the program is ended in the first run. 
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Fig.2 - Viscous layer flagging mechanism. 
 
     On the second run of the software the viscous layer data is read 
(step 2.2) and the mesh quality of the original mesh is stored. A 
Free-Form Deformation (FFD) box is created around the region to 
be morphed based on the input data provided by the user (box 
resolution, vectors defining the edges of the box, biasing factors 
controlling the distance between each control point). The 
parametric location of the surface nodes in the FFD box is 
calculated by using an inverse spline approach (step 7). The control 
points of the FFD box are translated based on the displacement 
matrix specified by the user in the input file. The displacement of 
the surface nodes and viscous layer tree nodes, if any, is then 
updated. The coordinates of all remaining nodes are repositioned 
by using a spring model analogy (Battina, 1990), producing a 
smooth mesh between the morphed and unchanged parts of the grid. 
A quality control algorithm searches the domain for poorly shaped 
cells and fixes them according to a predefined criterion. This is a 
fundamental step for the success of the whole CFD process since 
the accuracy of the solution is directly related to cell quality. Step 8 
can be part of a loop if a stack of morphed meshes is desired. This 
whole process has been linked to a commercial CFD solver 
(Fluent) and a high level scripting interface for process integration 
and optimization (iSIGHT-FD). The description of this process 
integration will be published in the near future. 
 
Mesh quality control 
     One of the most important routines of the mesh morphing tool is 
the one controlling the quality of the outgoing mesh. Although the 
spring model usually produces a smooth mesh there are challenging 
cases in which cells with negative volume, high skewness or 
excessively warped faces are unavoidably created. For such cells a 
tabu based mesh optimization algorithm is used. 
 

      

      
      

 

Fig.3 - Subdivision of incoming cells into tetrahedral cells. 

     The objective of the first run of the mesh quality optimizer is to 
search and eliminate negative volume cells. The incoming cell is 
first subdivided into tetrahedral cells using similar approach to the 
one described by Dompierre et al (1999), shown in Fig.3. The 
smallest volume among all the permutations of tetrahedral cells is 
the value stored as the volume of the original cell. The nodes 
belonging to each negative cell are then flagged. The optimizer 
moves the node along each of the edges connected to such node and 
the best case is stored. The process is repeated until the objective is 
achieved. 
     The second part of the optimization is to improve the mesh 
quality parameter RPI defined by the following equation: 
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where V is the volume of a tetrahedral cell and A its respective area. 
For every original cell the RPI is defined as the lowest RPI among 
all possible permutation of tetrahedral cells. The optimization of 
RPI itself would not be of much use in regions where good quality 
cells with large aspect ratio are expected. For such reason the 
quality control marker ∆RPI was adopted instead: 
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Fig.4 - Warped face 
of a hexahedral cell 

 Fig.5 - Objective space for 
optimization of hexahedral/prismatic 

cell quality 
 
     In some cases using ∆RPI as the sole figure of merit may cause 
the optimizer to find acceptable quality tetrahedrons inside a poor 
quality hexahedron/prism (Fig.4). This is because there is no 
constraint in terms of the flatness of the faces of the 
hexahedral/prism cell. For such reason, the face warpage metric 
was introduced. The cross-product of each pair of edges of a 
quadratic face is calculated, resulting in a normal for each of the 
four nodes. Warpage is defined as the worst case angle deviation 
among the normals. The nodal value of ∆RPI (fR) is normalized by 
the highest value among all relevant nodes whereas the nodal value 
for warpage (fW) is normalized by the fixed value of 0.5. The figure 
of merit for the optimization is defined as:  
 

22
RW ffF ′+′=′                                (3) 

 
where F' is the objective function, f'W the warpage and f'R the ∆RPI, 
all in the normalized objective space (Fig.5). The optimization 
terminates when the objective criterion for ∆RPI (2.0) is reached. If 
the convergence criterion is not satisfied the upper limit for ∆RPI is 
redefined as the highest value from the previous run and the 
optimization is restarted. 
     In order to test the mesh quality control routine, a hexahedral 
structured mesh around a turbine blade was morphed. The top part 
of Fig.6a shows the morphed mesh before running the quality 
control routine. Note the trapezoidal shape of one of the low quality 
cells (red circle). In total, 203 nodes were flagged for quality 
improvement. The center plots in Fig.6 show the ∆RPI distribution 
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on a crystal cut of the mesh (hexahedral cells subdivided into 
tetrahedral cells). The red color indicates low mesh quality (high 
∆RPI) whereas blue indicates high quality (low ∆RPI). It is also 
important to note that the color representation is node based. The 
value of a scalar for a particular node is actually the lowest value 
among all neighboring cells. After running 10 optimization steps 
the number of selected nodes for quality improvement was reduced 
to 16 and the largest ∆RPI was reduced from 34801.0 to 2.26, 
which is already an acceptable value (center right plot of Fig.6b). In 
the top part of Fig.6b it is shown how the nodes belonging to low 
quality cells were moved around, slightly reducing the quality of 
some cells (by introducing a small amount of warpage) but 
improving the overall quality. In the bottom part of Fig.6 contours 
of y-velocity gradient in the y-direction calculated from Fluent 
results are shown. The impact of mesh quality on the solution can 
be qualitatively observed. The red core observed in the early stages 
of the mesh quality optimization is gradually smoothed out. 
 

  

  
  

  
  

  
  

a) Before quality control b) After 10 steps 
  

 

Fig.6 - Example of quality control routine acting on poorly shaped 
cells (top: hexahedral mesh; center: ∆RPI; bottom: y-velocity 

gradient in the y-direction). 
      
Test case: leading edge filleting 
     Leading edge modification of inlet guide vanes is a technique 
that has been used by turbine designers to reduce secondary flows 
and minimize the associated aerodynamic losses (Becz et al., 2003) 
as well as to reduce adiabatic wall temperatures (Lethander et al., 
2003). Finding the optimum shape of the junction between leading 
edge and endwall is a challenging task and is usually done by 
experience or with the help of an optimizer. The objective of this 
test case is to demonstrate the potentiality of the mesh morphing 
tool for integration within a fully automated design optimization 

system. 
     The control points of the FFD box near the leading edge were 
gradually displaced along the spanwise direction to generate a 
smooth convex surface, as shown in Figs.7 and 8. The main 
complication with respect to mesh quality was handled by a viscous 
layer blending approach. 
 

  

  
  

 

Fig.7 - FFD box for original and morphed meshes. 
 

  

  
  

  
  

 

Fig.8 - Limiting streamlines and crystal cut of original and morphed 
meshes. 

 
     In the bottom part of Fig.8 limiting streamlines are shown for the 
original and morphed meshes. The solution was obtained by 
running Fluent 6.2 with k-ω SST model and second order scheme 
for all variables. It is clearly observed that the location of the saddle 
point was shifted towards the leading edge due to the convex shape 
of the fillet. The endwall separation line was moved towards the 
leading edge of the blade, indicating that the penetration of the inlet 
boundary layer for the filleted case is smaller than the original one. 
As a consequence, the formation of the new boundary layer beneath 
the passage vortex occurs at an earlier stage for the filleted leading 
edge configuration. 
 
AN INTEGRATED, PARALLEL, GEOMETRY 
ENGINE, MESH GENERATOR, FLOW SOLVER AND 
POST- PROCESSOR 
     This second computational tool uses a completely different 
approach from traditional CFD codes. The architecture of the 
software provides an integration of the solid modeling directly with 
the mesh generation and with the flow solution (Fig.9). The solid 
model is initialized by the import of a tessellated surface from a 
variety of potential sources, such as STL format. The solid model is 
then captured on the adaptive, unstructured Cartesian hexahedral 
mesh very efficiently by cutting the tessellated boundaries using 
basic computer graphics constructs developed for interactive 3D 
gaming. The uniqueness of this software is in its capabilities of 
providing the user a flexible graphical user interface for topological 
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editing, or flow sculpting, and rapidly updating the flow solution for 
the morphed geometry. 
 

 

Import solid 
model via its 
tessellated 

surface
(STL or VRML)

Capture the 
geometry on the 

octree mesh

Solve for the 
distance field 

and extract the 
body as the 
zero level

Flow solution

Change the geometry by 
editing the distance field -

SCULPT

Export solid model via its 
tessellated surface (STL or VRML)  

 
 

Fig.9 - Working principle of the integrated geometry engine, mesh 
generator, flow solver and post-processor. 

 
     The software has a built-in flow 3D RANS flow solver which 
was adapted from an existing unstructured mesh RANS solver. For 
additional information readers are encouraged to refer to the papers 
by Dawes (2005), Dawes (2006) and Dawes et al (2007). 
 
Test case: internal cooling system 
     The employment of new concepts in the design of blades for 
modern gas turbines has pushed the orthodox CFD process to its 
limit. Interesting CFD calculations have been conducted by several 
authors for complex geometries such as internal cooling systems 
with arrays of pin fins, cooling holes, dust holes and ribs (Bucchieri 
et al, 2006, Kulasekharan and Prasad, 2006). In most cases the 
geometry is parameterized and the mesh is regenerated according to 
the new configuration that the optimizer is analyzing. It is 
convenient for some CFD analysts to instruct the mesh generator to 
create an unstructured mesh, create the prismatic viscous layers and 
finally generate an unstructured mesh using tetrahedral cells. There 
are other engineers who prefer to work with templates for creating 
multi-block structured meshes. In any case, the amount of time 
required to set-up the scripts for driving the mesh generator can be 
substantially large. In addition to that, the fact that a template must 
be defined a priori constrains the design space for the optimizer. 
The robustness of the system is also compromised since the mesh 
generator will simply abort if, for instance, one pin fin overlaps a 
neighbouring pin fin. 
      

      

 
 

 

Fig.10 - Triangulated surfaces for a cascade with internal cavity. 
 
     The present methodology, on the other hand, works in a 
completely different way. The triangulated surfaces shown in 
Fig.10 were generated from a generic cascade data. An internal 
cavity was also added to the model in order to produce an 
approximation to the internal cooling system of a real blade. The 
coolant flow enters the cavity from the hub (blue arrow) and exits at 
the trailing edge slot (green arrows). The triangulated surfaces are 
therefore the starting point for the software. Once the input data is 
read, a user-defined uniform Cartesian mesh is generated and the 

cells which are intersected by the triangles are flagged as cut cells. 
The mesh is then refined and the process is repeated until the 
maximum number of refinements has been reached. Figures 11a 
and 12a show the fluid mesh for pitchwise and spanwise planes, 
respectively. The solid mesh is shown in Figs.11b and 12b. The fact 
that the software generates both fluid and solid mesh at once makes 
the approach very attractive for multi-disciplinary problems. 
     The crucial part for the topology editing or sculpting capability 
of the software lies on the Level Set Method (Osher and Sethian, 
1988). Each cell has associated with it the signed distance to the 
nearest point on the body (the triangulated surfaces in Fig.10), 
known as a distance field. Boundaries are represented as the zero 
isosurface of the Level Set (green color in Figs.11c and 12c). The 
blue color in the figures represents the negative distance (solid 
cells) whereas the red color represents the positive distance (fluid 
cells). Sculpting means simply editing the distance field using a 
simple voxel-wise logic. 
 

   

  
 

   

a) Fluid Mesh b) Solid Mesh c) Distance Field 
   

 

Fig.11 - Initial geometry (pitchwise plane). 
 

   

   
   

a) Fluid Mesh b) Solid Mesh c) Distance Field 
   

 

Fig.12 - Initial geometry (spanwise plane). 
   
     Integration with a design optimization system.      The                        
described software covers all steps in a CFD analysis, from 
geometry import to results visualization. In order to take full 
advantage of its powerful capabilities the software was integrated 
with a widely used high level scripting interface, iSIGHT-FD 2.0. 
One great advantage of this integration is that it provides the user 
unlimited flexibility and robustness for modifying the geometry 
according to the instructions from the optimizer. In practice, any 
possible manufacturing operation can be performed on the model in 
an analogous way to an actual NC machine. The other advantage is 
that the optimization process script in iSIGHT-FD can be easily 
added to a greater process within its framework. This would be very 
convenient for large corporations that have chosen to use such 
system for integrating the different disciplines involved in the 
design process.    
     A configuration file (Fig.13) is used as a means of defining the 
parameters for the editing tools, such as tool type, editing mode 
(remove or add material), tool radius, tool length and tool location. 
This file is read by both software packages and it is the main source 
of data exchange between them. 
     The high level scripting interface for the design optimization 
system is relatively easy to use. The methodology is similar to other 
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visual programming interfaces, such as Visual Basic, in which the 
user starts with an empty canvas and gradually populates it by 
dragging and dropping icons (or components). Figure 14 shows the 
script for conducting an optimization task. The icon named DOE1 
controls a design of experiments task. Double-clicking on the icon 
will open a window in which the user can choose the type of 
approach for DOE, the design variables, constraints and cost 
function. For the present test case, a fixed number of 15 cylindrical 
tools was chosen and the design variables were the spanwise 
location of each tool and its radius. The idea was to create an array 
of pin fins in the internal cavity by adding material to the mesh. 
Each cylindrical tool works as a piece of metal to be deposited in 
the cavity. The DOE algorithm generated hundreds of random 
combinations of the 30 design variables. The Update ConfigTools 
icon writes the new values of the design variables to the common 
configuration file for the software (BoXeR icon) to read. The 
software imports the triangulated surfaces, generates the mesh, 
calculates the distance field for the original geometry, reads in the 
editing tool data from the configuration file, calculates the distance 
field for each of the editing tools, combines the distance field from 
the original geometry and the editing tool, generates the edited 
mesh and exports encapsulated postscript files of screen shots 
captured during the process.        
 

 

15         --> Number of tools 
2          --> Tool 1: type = cylinder 
-1         --> Tool 1: operation = add 
-0.00169   --> Tool 1: x-coordinate 
0.0175     --> Tool 1: y-coordinate 
0.091666   --> Tool 1: z-coordinate 
0.009666   --> Tool 1: radius 
0.011154   --> Tool 1: length 
0.0        --> Tool 1: angle 1 
0.0        --> Tool 1: angle 2 
0.0        --> Tool 1: angle 3 
2          --> Tool 2: type = cylinder 
-1         --> Tool 2: operation = add 
-0.00169   --> Tool 2: x-coordinate 
0.0175     --> Tool 2: y-coordinate 
0.136666   --> Tool 2: z-coordinate 
0.0060     --> Tool 2: radius 
0.011154   --> Tool 2: length 
0.0        --> Tool 2: angle 1 
0.0        --> Tool 2: angle 2 
0.0        --> Tool 2: angle 3 
. 
. 
. 

 
 

Fig.13 - Configuration file for defining the editing operations. 
 

 

 
 
 

Fig.14 - The high level scripting interface (iSIGHT-FD). 

     The CPU time required for the execution of the CFD code for 
one configuration took in average 75s on a 64-bit workstation for a 
mesh of approximately 2.1 million cells. It must be mentioned that 
the process of rendering the plots and saving to file (purely for 
demonstration purposes) took 20% of the total CPU time. 
     Figure 15 presents some of the screen shots for the editing using 
a cylindrical tool. The top left figure shows the original triangulated 
surfaces in red and the cylindrical tools in blue. The top center 
figure shows the distance field. The blue region inside the green 
circles indicates the existence of solid cells. The top right figure 
shows the fluid cells after the edit. The proposed approach proves 
to be extremely flexible, allowing a full exploration of the design 
space. In the bottom part of the figure the distance field contour plot 
and the fluid and solid meshes are shown from a different 
viewpoint. 
      

   

   
   

   
 

 

Fig.15 - Topology editing using a cylindrical tool. 
        
     Figure 16 shows similar test case results but using an arbitrary 
tool (profiled fin). The STL model for the tool was generated using 
two widely used software packages (Gambit and TGrid). The 
editing tool was easily imported into the software by adding an 
extra line to the configuration file pointing to the location and name 
of the file containing the triangulated surfaces for the customized 
tool. This is a very important feature in the software since the 
editing may also be regarded as a means to construct a complex 
geometry starting from a simple blade and adding all the other parts 
using the editing tool. For instance, in the case of unshrouded 
blades, the designer might be interested in investigating the effects 
of the squealer shape or type on the heat transfer in the tip region. In 
this case the input geometry for the software could be a triangulated 
surface representing the blade without the squealer and the editing 
tools could be the triangulated surfaces for different types of 
squealers. The design variables could be the squealer type and 
height. 
     The flow solution for the castellated fluid meshes shown in 
Figs.15 and 16 could be either run directly by the built-in standard 
solver, or a ghost cell (Viecelli, 1971) based solver or exported as a 
conformal mesh without the hanging nodes to a third party CFD 
solver, such as Fluent. The aim of the current paper, however, is to 
present the capabilities of the software to rapidly generate and edit 
meshes from an STL file with minimum user interaction. The 
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linkage of the solver or third party solvers into the process is 
currently ongoing and will be reported in future publications. 
 

   

   
   

   
 

 

Fig.16 - Topology editing using an arbitrary tool. 
      
CONCLUDING REMARKS 
     The development of two innovative computational tools for 
turbomachinery design was presented. Both software packages 
were designed to bypass the CAD-mesh bottleneck and permit 
meaningful automation. The successful integration of the second 
computational tool with a widely used process integration and 
design optimization system was demonstrated. 
     The mesh morphing tool described in the first part of the paper 
was designed for cases where systematic and moderate changes to a 
large computational mesh are desired. It is best used in the 
intermediate step of a design process assisted by CFD, where the 
initial mesh and result data are available and the analyst is satisfied 
with the quality of the solution. From that stage the designer would 
probably be wishing to evaluate the effect of a particular 
geometrical parameter on a certain figure-of-merit. In order to 
avoid the trouble of manually modifying the geometry at CAD 
level and going through the labour intensive task of regenerating 
the mesh, the analyst may instead setup the mesh morphing tool to 
make changes to the mesh automatically. The free-form 
deformation (FFD) approach was used as a means to morph the 
surface mesh. This technique allows the designer to survey a far 
wider design space than a restricted set of design parameters. The 
displacement of one control point of the FFD box allows the 
variation of several engineering parameters at once. The free-form 
deformation routines as well as the mesh quality optimizer are part 
of a library of functions that were used by the second computational 
tool. 
     The second computational tool, on the other hand, provides 
unlimited flexibility for editing the computational domain. The 
methodology is ideal for rapid prototyping during the early phases 
of the design process. It is designed for speed and for minimum user 
interaction during the mesh generation. The built-in automatic 
CAD clean-up tool eliminates the tedious task of fixing dirty 
geometries. The CAD-mesh process is handled internally by the 
software, restricting the user interaction to simply defining the 
computational domain extension and number of mesh refinement 

levels. The robustness of the software makes it a powerful tool for 
conducting truly automated design optimization. The integration of 
the software with a design optimization system was straightforward 
and the ease of use of both software packages is certainly 
encouraging for engineers willing to conduct complex real-world 
design optimization. The integration of the solver or a third party 
CFD solver into the design optimization framework is currently 
underway and results will be published in the near future. Exploring 
the natural conjugate format of the mesh generated by the software 
for multi-disciplinary problems is another task that the authors are 
planning for the near future. Some of the capabilities of the mesh 
morphing tool, such as free-form deformation for editing the 
triangulated surfaces and mesh quality optimization for the 
conformal mesh export routine, were also incorporated into this 
software. 
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